Home
Class 11
MATHS
[" If "A+B+C=pi" them prove that "],[sin...

[" If "A+B+C=pi" them prove that "],[sin A-sin B+sin C=4sin(A)/(2)sin(B)/(2)*sin(C)/(2)]

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi then prove that cos A+cos B+cos C=1+4sin((A)/(2))*sin((B)/(2))*sin((C)/(2))

If A+B+C=pi , prove that: "sin" A+"sin" B-"sin" C=4 "sin"(A)/(2)"sin"(B)/(2)"cos"(C)/(2) .

If A+B+C=pi then prove that sin2A-sin2B+sin2C=4cosAsinBcosC

Prove that, sinA+sinB+sinC-sin(A+B+C)= 4sin((A+B)/(2))sin((B+C)/(2))sin((C+A)/(2))

If A, B, C are angles in a triangle , prove that sin A+ sin B -sin C =4sin. (A)/(2)sin. (B)/(2) cos. (C)/(2)

sin A + sin B-sin C = 4sin ((A) / (2)) sin ((B) / (2)) cos ((C) / (2))

If A+B+C =pi , prove that sin 2A+sin 2B+sin 2C=4 sin Asin B sin C.

If A + B + C = pi , prove that cos A + cos B + cos C= 1 + 4 sin(A/2) sin(B/2) sin(C/2)

If A+B+C=pi then prove that sin2A-sin2B+sin2C=4cos A sin B cos C

If A+B+C=pi , prove that sin 2A+sin 2B+sin 2C=4 sinA sin B sinC.