Home
Class 10
MATHS
" If "cos theta+sin theta=p" and "sec th...

" If "cos theta+sin theta=p" and "sec theta+csc theta=q" ,then prove that "q(p^(2)-1)=2p

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos theta + sin theta = p and sec theta + cosec theta = q , prove that q (p^(2) - 1) = 2p .

If sintheta+costheta=pandsectheta+"cosec"theta=q then prove that q(p^(2)-1)=2p .

If sintheta+costheta=pandsectheta+"cosec"theta=q then prove that q(p^(2)-1)=2p .

If sin theta + cos theta = p and sec theta + "cosec"theta = q , then prove that q(p^(2)-1) = 2p .

If sin theta+cos theta=p and sec theta+csc theta=q show that q(p^(2)-1)=2p

If sin theta+cos theta=p and sec theta+cos ec theta=q show that q(p^(2)-1)=2p

If sin theta+ cos theta = p and sec theta + cosec theta = q ; show that q(p^2-1) = 2p

If tan theta +sin theta = p and tan theta-sin theta = q , prove that p^(2)-q^(2)=4sqrt(pq)

If x=p sec theta+q tan theta&y=p tan theta+q sec theta then prove that x^(2)-y^(2)=p^(2)-q^(2)

If sin theta+cos theta=p and sec theta+cos ec theta=q find q(p^(2)-1)=