Home
Class 12
MATHS
In AABC. A+B+C = 7 show that: sinA + sin...

In AABC. A+B+C = 7 show that: sinA + sinB + sinC = 4 cos cos cos -

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi , prove that : sinA+sinB+sinC= 4cos, A/2 cos, B/2 cos, C/2

In triangleABC,A+B+C=pi ,show that sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C /2)

If sin (A + B) + sin(B + C) + cos (C - A) = - 3/2 "show that", sinA + cosB + sinC = 0, cosA + sinB + cosC = 0.

If A+B+C=pi , prove that : sinA+sinB+sinC= 4cos( A/2 )cos( B/2) cos(C/2)

sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)

sin(A-B)=sinA cos B-cosA sinB

If A+B+C=180 , prove that: sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)

Prove that : 2 sinA sinB = cos (A-B) -cos (A + B).

If A+B+C=pi , prove that : sinA cosB cosC +sinB cosC cosA + sinC cosA cosB = sinA sinB sinC .

If A+B+C=pi , prove that : sinA cosB cosC +sinB cosC cosA + sinC cosA cosB = sinA sinB sinC .