Home
Class 11
MATHS
2sin^2x+sqrt3cosx+1=0...

`2sin^2x+sqrt3cosx+1=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the smallest positive angle which satisfies the given trigonometric equation: 2sin^2 x+ sqrt3cosx + 1 = 0 सबसे छोटा सकारात्मक कोण ज्ञात कीजिए जो दिए गए त्रिकोणमितीय समीकरण को संतुष्ट करता है:

Find the general solution for each of the following equations : 2sin^(2)x+sqrt(3)cosx+1=0

The value of x in (0,pi/2) satisfying the equation, (sqrt3-1)/sin x+ (sqrt3+1)/cosx=4sqrt2 is -

Solve : e^(sin x+sqrt(3) cosx-1)=1 (-2pi lt x lt 2pi)

If [2sinx]+[cosx]=-3 then the range of the function f(x)=sinx+sqrt3cosx in [0, 2pi] is, (where [.] denotes the greatest integer function)

The number of solution of sqrt3Cos^2x=(sqrt3-1)Cosx+1 , x in [0,pi/2]

Consider the equation sqrt3sinx-cosx=sqrt2 prove that sin (x-(pi/6))=1/sqrt2

Which of the following functions is non-periodic? (1) 2^x/2^[x]= (2) sin^(-1)({x}) (3) sin^(-1)(sqrt(cosx)) (4) sin^(-1)(cos x^2)

If 4sin^(2)x-2 (1+sqrt(3))sin x + sqrt(3)=0 then theta =