Home
Class 11
MATHS
lim(x rarr0)(e^(x)-e^(sin x))/(x-sin x)=...

lim_(x rarr0)(e^(x)-e^(sin x))/(x-sin x)=?

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(e^(x)-e^(sin x))/(2(x-sin x))=

lim_(x rarr0)(e^(x)-e^(sin x))/(2(x-sin x))=

lim_(x rarr0)(e^(x)-e^(sin x))/(3(x-sin x))

lim_(x rarr0)(e^(x)-e^(sin x))/(1-cos x)

Evaluate: lim_(x rarr0)(e^(x)-e^(x cos x))/((x+sin x))

lim_(x rarr0)((e^(x)-e^(-x))/(sin x))

lim_(x rarr0)((1)/(x))^(sin x)

lim_(x rarr0)(cot x)^(sin x)