Home
Class 10
MATHS
(2x^(2)-2sqrt(2)x+1)/(b)c...

(2x^(2)-2sqrt(2)x+1)/(b)c

Promotional Banner

Similar Questions

Explore conceptually related problems

d/(dx)[cos^(-1)(xsqrt(x)-sqrt((1-x)(1-x^2)))]= 1/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) (-1)/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2))+1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2)) 0 b. 1//4 c. -1//4 d. none of these

d/(dx)[cos^(-1)(xsqrt(x)-sqrt((1-x)(1-x^2)))]= 1/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) (-1)/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2))+1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2)) 0 b. 1//4 c. -1//4 d. none of these

d/(dx)[cos^(-1)(xsqrt(x)-sqrt((1-x)(1-x^2)))]= 1/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) (-1)/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2))+1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2)) 0 b. 1//4 c. -1//4 d. none of these

lim_(x rarr2)(((x^(3)-4x)/(x^(3)-8))^(-1)-((x+sqrt(2x))/(x-2)-(sqrt(2))/(sqrt(x)-sqrt(2)))^(-1)) is equal t(1)/(2)(b)2(c)1(d) none of these

lim_(x rarr oo) sqrt(x^(2)+1)- sqrt(x^(2)-1) = a)-1 b)1 c)0 d)2

int(x^(4)-1)/(x^(2))sqrt(x^(4)+x^(2)+1)dx equal to (A) sqrt((x^(4)+x^(2)+1)/(x)+c(B)sqrt(x^(4)+2-(1)/(x^(2)))+c)sqrt((x^(4)-x^(2)+1)/(x))+c

If x=5+2sqrt(6), then sqrt((x)/(2))-(1)/(sqrt(2x))= (a) 1 (b) 2 (c) 3 (d) 4

The minimum value of [x_(1)-x_(2))^(2)+(12-sqrt(1-(x_(1))^(2))-sqrt(4x_(2))]^((1)/(2)) for all permissible values of x_(1) and x_(2) is equal to a sqrt(b)-c where a,b,c in N, the find the value of a +b-c

Solution of (2+sqrt(3))^(x^(2)-2x+1)+(2-sqrt(3))^(x^(2)-2x-1)=(4)/(2-sqrt(3))are(A)1+-sqrt(3),1(B)1+-sqrt(2),1(C)1+-sqrt(3),2(D)1+-sqrt(2),2

None of these int(2x)/((1-x^(2))sqrt(x^(4)-1))dx is equal to :( A) sqrt((x^(2)-1)/(x^(2)+1))+c(B)sqrt((x^(2)+1)/(x^(2)-1))(C)sqrt(x^(4)+1)(D) None of these