Home
Class 9
MATHS
((a^(2)-b^(2))^(3)+(b^(2)-c^(2))^(3)+(c^...

((a^(2)-b^(2))^(3)+(b^(2)-c^(2))^(3)+(c^(2)-a^(2))^(3))/((a-b)^(3)+(b-c)^(3)+(c-a)^(3))

Promotional Banner

Similar Questions

Explore conceptually related problems

Find : ((b^(2a)-c^(2a))^(3)+(c^(2a)-a^(2a))^(3)+(a^(2a)-b^(2a))^(3))/((b^(a)-c^(a))^(3)+(c^(a)-a^(a))^(3)+(a^(a)-b^(a))^(3))

(a-2b)^(3)+(c-a)^(3)+(2b-c)^(3)

Simplify: ((a^2-b^2)+(b^2-c^2)^3+(c^2-a^2)^3)/((a-b)^3+(b-c)^3+(c-a)^3)

|(3, a+b+c, a^(2)+b^(2)+c^(2)),(a+b+c, a^(2)+b^(2)+c^(2), a^(3)+b^(3)+c^(3)), (a^(2)+b^(2)+c^(2),a^(3)+b^(3)+c^(3), a^(4)+b^(4) +c^(4))| =K(a-b)^(2)(b-c)^(2)(c-a)^(2) then k =

Prove that ((a)/(b)-(b)/(c))^(3)+((b)/(c)-(c)/(a))^(3)+((c)/(a)-(a)/(b))^(3)=(3(ca-b^(2))(ab-c^(2))(bc-a^(2)))/(a^(2)b^(2)c^(2))

The value of [(a^2-b^2)^3+(b^2-c^2)^3 + (c^2-a^2)^3] div [(a-b)^3+(b-c)^3+(c-a)^3 ] is equal to: (Given a ne b ne c ) [(a^2-b^2)^3+(b^2-c^2)^3 + (c^2-a^2)^3] div [(a-b)^3+(b-c)^3+(c-a)^3 ] का मान बराबर है: ( a ne b ne c दिया)

Show that |{:(a,b,c),(b,c,a),(c,a,b):}|^2=|{:(2bc-a^(2),c^(2),b^(2)),(c^(2),2ac-b^(2),a^(2)),(b^(2),a^(2),2ab-c^(2)):}|=(a^(3)+b^(3)+c^(3)-3abc)^(2)

(a^(2))/(2) + (b^(3))/(3) - (3c^(3))/(4) + (a^(2))/(3) - (3b^(3))/(4) + (c^(2))/(2) - (3a^(2))/(4) + (b^(3))/(2) + (c^(3))/(3) = "______"

Factorize the following 3,a+b+c,a^(3)+b^(3)+c^(3)a+b+c,a^(2)+b^(2)+c^(2),a^(4)+b^(4)+c^(4)a^(2)+b^(2)+c^(2),a^(3)+b^(3)+c^(3),a^(5)+b^(5)+c^(5)]|

Prove: a^(3)+b^(3)+c^(3)-3abc=(1)/(2)(a+b+c){(a-b)^(2)+(b-c)^(2)+(c-a)^(2)}