Home
Class 12
MATHS
" Prove that "tan^(-1)sqrt(x)=(1)/(2)cos...

" Prove that "tan^(-1)sqrt(x)=(1)/(2)cos^(-1)([1-x],[1+x]),x in]0,1[

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: tan^(-1)sqrt(x)=1/2cos^(-1)((1-x)/(1+x)), x in [0,1]

Prove that: tan^(-1)sqrt(x)=1/2cos^(-1)((1-x)/(1+x)), x in [0,1]

Prove that: tan^(-1)sqrt(x)=1/2cos^(-1)((1-x)/(1+x)), x in [0,1]

Prove that: tan^(-1)sqrt(x)=1/2cos^(-1)((1-x)/(1+x)), x in [0,1]

Prove that: quad tan^(-1)sqrt(x)=(1)/(2)cos^(-1)((1-x)/(1+x)),x in[0,1]

Prove that : tan^(-1)sqrtx=1/2cos^(-1)((1-x)/(1+x)),x in[0,1]

Prove that tan^(-1)sqrtx = 1/2cos^(-1) ((1-x)/(1+x)), x in [0,1]

Prove That : tan^(-1)sqrt(x)=1/2"cos"^(-1)(1-x)/(1+x),x epsilon[0,1]

Prove That : tan^(-1)sqrt(x)=1/2"cos"^(-1)(1-x)/(1+x),x epsilon[0,1]

Prove That : tan^(-1)sqrt(x)=1/2"cos"^(-1)(1-x)/(1+x),x epsilon[0,1]