Home
Class 9
MATHS
[" Example "7." Prove that the equations...

[" Example "7." Prove that the equations "y=mx+c],[" and "x cos alpha+y sin alpha=p" represent same straight "],[" lines,if "c=p sqrt(1+m^(2))]

Promotional Banner

Similar Questions

Explore conceptually related problems

if the equations y=mx+c and x cos alpha+y sin alpha=p represent the same straight line then:

if the equations y=mx+c and xcosalpha+ysinalpha=p represent the same straight line then:

If the equations y=mx+c and x cos alpha+y sin alpha=p represent the same straight line,then p=c sqrt(1+m^(2))(b)c=p sqrt(1+m^(2))cp=sqrt(1+m^(2))(d)p^(2)+c^(2)+m^(2)=1

If the equations y=m x+c and xcosalpha+ysinalpha=p represent the same straight line, then (a) p=csqrt(1+m^2) (b) c=psqrt(1+m^2) (c) c p=sqrt(1+m^2) (d) p^2+c^2+m^2=1

If the equations y=m x+c and xcosalpha+ysinalpha=p represent the same straight line, then (a) p=csqrt(1+m^2) (b) c=psqrt(1+m^2) (c) c p=sqrt(1+m^2) (d) p^2+c^2+m^2=1

If the equations y=m x+c and xcosalpha+ysinalpha=p represent the same straight line, then (a) p=csqrt(1+m^2) (b) c=psqrt(1+m^2) (c) c p=sqrt(1+m^2) (d) p^2+c^2+m^2=1

Reduce the equation of the line x cos alpha+y sin alpha-p=0 into intercepts form

If Ax+By=C and x"cos"alpha+y"sin"alpha=p represent the same line, find p in terms of A, B, C.

Find P and alpha by converting equation x+y =1 in xcos alpha + y sin alpha = P form.

If m cos alpha-n sin alpha=p then prove that m sin alpha+n cos alpha=+-sqrt(m^(2)+n^(2)-p^(2))