Home
Class 10
MATHS
[" Prample "37" If "tan A=n tan B" and "...

[" Prample "37" If "tan A=n tan B" and "sin A=m sin B," prove that "cos^(2)A=(m^(2)-1)/(n^(2)-1)],[" solution We have to find "cos^(2)A" in terms of "m" and "n" .This means that the angle "B" is "],[" eliminated from the oiven molotions "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan A = n tan B and sin A = m sin B , show that cos^(2)A= (m^(2)-1)/(n^(2)-1) .

If "tan" alpha= n tan beta and sin alpha =m sin beta prove that : cos^(2)alpha=(m^(2)-1)/(n^(2)-1)

If tan alpha= n tan beta and sin alpha= m sin beta , prove that cos^2 alpha= (m^2-1)/(n^2-1) .

If a cos A+b sin A=m and a sin A-b cos A=n prove that a^(2)+b^(2)=m^(2)+n^(2)

lfcos A+s in B=m and s in A+cos B=n prove that 2sin(A+B)=m^(2)+n^(2)-2

If cos A+sin B=m and sin A+cos B=n , prove that 2sin(A+B)=m^2+n^2-2.

If tan A + sin A = m and tan A - sin A = n, prove that : m^(2) - n^(2) = 4 sqrt (mn)

If sin A = m sin B, "prove that" "tan" (A-B)/2 = (m-1)/(m+1) "tan" (A+B)/2

If cos A+sin B=m and Sin A+cos B=n ,then prove that 2sin (A+B)=m^2+n^2-2 .

Sin A=m sin B,show that , tan((A-B)/2)=(m-1)/(m+1)tan((A+B)/2)