Home
Class 11
MATHS
[" 71.The number of triplets satisfying ...

[" 71.The number of triplets satisfying "],[qquad sin^(-1)x+cos^(-1)y+sin^(-1)z=2 pi," is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of triple satisfying sin^(-1)x+cos^(-1)y+sin^(-1)z=2pi is

The number of triple satisfying sin^(-1)x+cos^(-1)y+sin^(-1)z=2pi is

If sin^(-1)x +cos^(-1)y +sin^(-1)z=2pi then 2x-z+y is :

The number of integer x satisfying sin^(-1)|x-2|+cos^(-1)(1-|3-x|)=(pi)/2 is

The number of integer x satisfying sin^(-1) |x -2| + cos^(-1) (1 -|3 -x|) = (pi)/(2) is

Point P(x,y) satisfying the equation sin^(-1)x+cos^(-1)y+cos^(-1)(2xy)=(pi)/2 lies on

Find the number of ordered pairs (x,y) satisfying the equations sin^(-1)x+sin^(-1)y=(2pi)/3 and cos^(-1)x-cos^(-1)y=-(pi)/3

Point P(x, y) satisfying the equation Sin^(-1)x+Cos^(-1)y+Cos^(-1)(2xy)=pi/2 lies on