Home
Class 12
MATHS
" If "sum(i=1)^(18)(x(i)-8)=9" and "sum(...

" If "sum_(i=1)^(18)(x_(i)-8)=9" and "sum_(i=1)^(18)(x_(i)-8)^(2)=45" then find the standard deviation of "x_(1),x

Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(i=1)^(18)(x_(i)-8)=9 and sum_(i=1)^(18)(x_(i)-8)^(2)=45 then the standard deviation of x_(1),x_(2),...,x_(18) is

If sum_(i=1)^(9)(x_(i)-5)=9 and sum_(i=1)^(9)(x_(i)-5)^(2)=45 then the standard deviation of the 9 items x_(1),x_(2),......,x_(9) is

If sum_(i=1)^(9)(x_(i)-5)=9andsum_(i=1)^(9)(x_(i)-5)^(2)=45 , then the standard deviation of the 9 items x_(1),x_(2),......,x_(9) is

If sum_(i=1)^(9) (x_(i)-5)=9 " and" sum_(i=1)^(9) (x_(i)-5)^(2)=45 , then the standard deviation of the 9 items x_(1),x_(2),..,x_(9) is

If sum_(i=1)^(9) (x_(i)-5) " and" sum__(i=1)^(9) (x_(i)-5)^(2)=45 , then the standard deviation of the 9 items x_(1),x_(2),..,x_(9) is

If x_(1), x_(2), "…......." x_(18) are observation such that sum_(j=1)^(18)(x_(j) -8) = 9 and sum_(j=1)^(18)(x_(j) -8)^(2) = 45 , then the standard deviation of these observations is

If x_(1), x_(2), "…......." x_(18) are observation such that sum_(j=1)^(18)(x_(j) -8) = 9 and sum_(j=1)^(18)(x_(j) -8)^(2) = 45 , then the standard deviation of these observations is

If sum _(i=1) ^(9) (x _(i) - 5) = 9 and sum_(i =1) ^(9) (x _(i) - 5) ^(2) = 45, then the standard deviation of the 9 terms x _(1), x _(2),....,x _(9) is