Home
Class 12
MATHS
Prove that tan^(-1)((a-b)/(1+ab))+ tan^(...

Prove that `tan^(-1)((a-b)/(1+ab))+ tan^(-1)((b-c)/(1+bc))+tan^(-1)((c-a)/(1+ca))=0`, `ab>(-1), bc>(-1), ca>(-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)((ab)/(1+ab))+tan^(-1)((bc)/(1+bc))+tan^(-1)((ca)/( 1+ca))=0,ab>(-1),bc>(-1),ca>(-1)

Prove that tan^(-1)((ab)/(1+ab))+tan^(-1)((bc)/(1+bc))+tan^(-1)((ca)/( 1+ca))=0,ab>(-1),bc>(-1),ca>(-1)

Prove that tan^(-1)((ab)/(1+ab))+tan^(-1)((bc)/(1+bc))+tan^(-1)((ca)/( 1+ca))=0,ab>(-1),bc>(-1),ca>(-1)

Prove that tan^(-1)((ab)/(1+ab))+tan^(-1)((bc)/(1+bc))+tan^(-1)((ca)/( 1+ca))=0,ab>(-1),bc>(-1),ca>(-1)

Show that: tan^(-1)(a-b)/(1+ab)+tan^(-1)(b-c)/(1+bc)+tan^(-1)(c-a)/(1+ca)=0 .

Prove that: cot^(-1)((ab+1)/(a-b))+cot^(-1)((bc+1)/(b-c))+cot^(-1)((ca+1)/(c-a))=0

Prove that: cot^(-1)((ab+1)/(a-b))+cot^(-1)((bc+1)/(b-c))+cot^(-1)((ca+1)/(c-a))=0 .

Prove statement "tan"^(-1)((a-b)/(1+ab)) +"tan"^(-1)((b-c)/(1+bc)) ="tan"^(-1)a-"tan"^(-1) c .

prove that , tan ^(-1)""(b-c)/(1+bc)+tan^(-1)""(c-a)/(1+ca)+tan ^(-1 )""(a-b )/(1+ab)=0 .

Prove statement "tan"^(-1) (a-b)/(1+ab)+"tan"^(-1)(b-c)/(1+bc) +"tan"^-1(c-a)/(1+ca) ="tan"^(-1) (a^2-b^2)/(1+a^2b^2) +"tan"^(-1)(b^2-c^2)/(1+b^2c^2)+"tan"^(-1) (c^2-a^2)/(1+c^2a^2)