Home
Class 9
MATHS
If a,b,c in R, x=a^2-bc, y=b^2-ab, z=c^2...

If `a,b,c in R`, `x=a^2-bc`, `y=b^2-ab`, `z=c^2-ab`, then prove that `x^3+y^3+z^3-3xyz`is a perfect square

Promotional Banner

Similar Questions

Explore conceptually related problems

If x = a^2 - b^2, y = 2ab, z = a^2+b^2 , then prove that x^6+y^6-z^6+3x^2y^2z^2=0

If x = b + c - 2a, y = c + a-2b , z = a + b-2c , then prove that x^3+y^3+z^3-3xyz=0

If x=a+b,y=aomega+bomega^2 and z=aomega^2+bomega , prove that xyz=a^3+b^3

If x + y + z = 6 and x^2 + y^2 + z^2= 20 then the value of x^3 + y^3 + z^3 - 3xyz is

If a = x+y , b = y+z , and c = z+x then show that a^3+b^3+c^3-3abc =2(x^3+y^3+z^3-3xyz)

If the expression x^2+2(a+b+c)x+3(bc+ca+ab) is a perfect square then

If the expression x^2+2(a+b+c)x+3(bc+ca+ab) is a perfect square then

If the expression x^(2)+2(a+b+c)x+3(bc+ca+ab) is a perfect square then