Home
Class 12
MATHS
log sqrt((1+sin x)/(1-sin x))...

log sqrt((1+sin x)/(1-sin x))

Promotional Banner

Similar Questions

Explore conceptually related problems

Find ( dy)/( dx) if y = log _(e) sqrt((1 + sin x)/( 1 - sin x )) , where x = pi// 3

Find (dy)/(dx) for the function: y=log_(e)sqrt((1+sin x)/(1-sin gx)), where x=(pi)/(3)

If y=log sqrt((1+sin^(2)x)/(1-sin^(2)x)), then find (dy)/(dx)

y=log ((1-sin x )/(1+sin x )),then (dy)/(dx) =

cot^(-1)((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=(x)/(2)

(cot^(-1){sqrt(1+sin x)+sqrt(1-sin x)})/(sqrt(1+sin x)-sqrt(1-sin x))

cot^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]=

the expression ((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=

Prove that: cot^(-1)((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=(x)/(2),x in(0,(pi)/(4))

Prove that : cot^(-1)(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))=(x)/(2),0