Home
Class 11
PHYSICS
A mass is suspended separately by two di...

A mass is suspended separately by two different springs in successive order, then time periods is `t_(1) "and" t_(2)` respectively. It is connected by both springs as shown in fig. then time period is `t_(0)`. The correct relation is

Promotional Banner

Similar Questions

Explore conceptually related problems

A mass is suspended separately by two different springs in successive order then time period is t_1 and t_2 respectively. If it is connected by both spring as shown in figure then time period is t_0 , the correct relation is : -

A mass m is suspended separately by two different springs of spring constant k_(1) and k_(2) given the time period t_(1) and t_(2) respectively. If the same mass m is shown in the figure then time period t is given by the relation

When a block of mass m is suspended separately by two different springs have time period t_(1)" and "t_(2) . If same mass is connected to parallel combination of both springs, then its time period is given by :-

When a block of mass m is suspended separately by two different springs have time period t_(1)" and "t_(2) . If same mass is connected to parallel combination of both springs, then its time period is given by :-

When a block of mass m is suspended separately by two different springs have time period t_(1)" and "t_(2) . If same mass is connected to parallel combination of both springs, then its time period is given by :-

A mass is suspended separately by two springs of spring constants k_(1) and k_(2) in successive order. The time periods of oscillations in the two cases are T_(1) and T_(2) respectively. If the same mass be suspended by connecting the two springs in parallel, (as shown in figure) then the time period of oscillations is T. The correct relations is

A mass is suspended separately by two springs of spring constants k_(1) and k_(2) in successive order. The time periods of oscillations in the two cases are T_(1) and T_(2) respectively. If the same mass be suspended by connecting the two springs in parallel, (as shown in figure) then the time period of oscillations is T. The correct relations is

A mass is suspended separately by two springs and the time periods in the two cases are T_(1) and T_(2) . Now the same mass is connected in parallel (K = K_(1) + K_(2)) with the springs and the time is suppose T_(P) . Similarly time period in series is T_(S) , then find the relation between T_(1),T_(2) and T_(P) in the first case and T_(1),T_(2) and T_(S) in the second case.

A mass is suspended separately by two springs and the time periods in the two cases are T_(1) and T_(2) . Now the same mass is connected in parallel (K = K_(1) + K_(2)) with the springs and the time is suppose T_(P) . Similarly time period in series is T_(S) , then find the relation between T_(1),T_(2) and T_(P) in the first case and T_(1),T_(2) and T_(S) in the second case.