Home
Class 12
MATHS
Let int (cos x dx)/(sin^3 x (1 + sin^6 x...

Let `int (cos x dx)/(sin^3 x (1 + sin^6 x))^(2/3) = f(x), (1 + sin^6 x )^(1/lambda) + C` then find the value of `lambda f(pi/3)`

A

4

B

-2

C

8

D

-4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the integral and find the value of \( \lambda f(\pi/3) \). Let's break down the solution step by step. ### Step 1: Set up the integral We are given the integral: \[ \int \frac{\cos x \, dx}{\sin^3 x (1 + \sin^6 x)^{2/3}} = f(x) \left(1 + \sin^6 x\right)^{1/\lambda} + C \] ### Step 2: Substitution We will use the substitution \( t = \sin x \). Then, \( dt = \cos x \, dx \). The integral becomes: \[ \int \frac{dt}{t^3 (1 + t^6)^{2/3}} \] ### Step 3: Simplifying the integral Now we can rewrite the integral: \[ \int \frac{dt}{t^3 (1 + t^6)^{2/3}} = \int \frac{1}{t^3} (1 + t^6)^{-2/3} \, dt \] ### Step 4: Factor out \( t^6 \) We can factor out \( t^6 \) from the denominator: \[ = \int \frac{1}{t^3} \left( t^6 \left(1 + \frac{1}{t^6}\right)^{-2/3} \right) dt = \int \frac{t^6}{t^3} \left(1 + \frac{1}{t^6}\right)^{-2/3} dt \] \[ = \int t^3 \left(1 + \frac{1}{t^6}\right)^{-2/3} dt \] ### Step 5: Let \( u = 1 + t^6 \) Let \( u = 1 + t^6 \). Then, \( du = 6t^5 \, dt \) or \( dt = \frac{du}{6t^5} \). We also have \( t^6 = u - 1 \), so \( t^5 = (u - 1)^{5/6} \). ### Step 6: Change of variables in the integral Substituting into the integral gives: \[ \int t^3 (1 + t^6)^{-2/3} dt = \int \left( (u - 1)^{1/2} \cdot u^{-2/3} \cdot \frac{du}{6(u - 1)^{5/6}} \right) \] This simplifies to: \[ \int \frac{(u - 1)^{1/2}}{6(u - 1)^{5/6} u^{2/3}} du = \int \frac{1}{6} (u - 1)^{-2/3} u^{-2/3} du \] ### Step 7: Integrate The integral can be solved using standard integration techniques, leading to: \[ = -\frac{1}{2} (1 + \sin^6 x)^{1/3} + C \] ### Step 8: Identify \( f(x) \) and \( \lambda \) From the expression we derived, we can identify: \[ f(x) = -\frac{1}{2} \sin^2 x \] From the original equation, we can also see that \( \lambda = 3 \). ### Step 9: Calculate \( \lambda f(\pi/3) \) Now we need to calculate \( \lambda f(\pi/3) \): \[ f(\pi/3) = -\frac{1}{2} \sin^2\left(\frac{\pi}{3}\right) = -\frac{1}{2} \left(\frac{\sqrt{3}}{2}\right)^2 = -\frac{1}{2} \cdot \frac{3}{4} = -\frac{3}{8} \] Thus, \[ \lambda f(\pi/3) = 3 \cdot \left(-\frac{3}{8}\right) = -\frac{9}{8} \] ### Final Answer The value of \( \lambda f(\pi/3) \) is: \[ \boxed{-\frac{9}{8}} \]

To solve the given problem, we need to evaluate the integral and find the value of \( \lambda f(\pi/3) \). Let's break down the solution step by step. ### Step 1: Set up the integral We are given the integral: \[ \int \frac{\cos x \, dx}{\sin^3 x (1 + \sin^6 x)^{2/3}} = f(x) \left(1 + \sin^6 x\right)^{1/\lambda} + C \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(sin x)=(1-sin^(5)x)^((1)/(5)) then what is the value of f(f(cos x))

int_ (lambda =) (dx) / (sqrt (1-tan ^ (2) x)) = (1) / (lambda) sin ^ (- 1) (lambda sin x) + C, then

" Let " =|{:(cos x,,sin x,,cosx),( cos 2x,,sin 2x,,2cos 2x),(cos 3x,,sin 3x,,3cos 3x):}| then find the values of f(0) and f' (pi//2) .

If f(x)=lambda|sin x|+lambda^(2)|cos x|+g(lambda) has a period =(pi)/(2) then find the value of lambda

int_(, then f(x))^( If )(dx)/(x^(3)(1+x^(6))^(2/3))=x*f(x)*(1+x^(6))^(1/3)+C

If F(x)=int((1+sin x)/(1+cos x))dx and F(0)=0 then the value of F(pi/2) is

int(sin x)/(cos^(3)x(1+cos^(8)x)^(3/4))*dx=f(x)*(1+cos^(8)x)^((1)/(lambda))+c Then lambda*f((pi)/(3))=

int(sin x)/(cos^(3)x(1+cos^(8)x)^(3/4))*dx=f(x)*(1+cos^(8)x)^((1)/(lambda))+c Then lambda*f((pi)/(3))=

If f(x)=x+sin x, then find the value of int_(pi)^(2 pi)f^(-1)(x)dx

"Let f(x) "=|{:(cos x" " sin x" " cos x),(cos 2x" "sin 2x" "2cos 2x),(cos 3x" "sin 3x" "3cos 3x):}|" Then find the vlue of "f'(0) and f'(pi//2).