Home
Class 12
MATHS
Let f(x) = {(sin (tan^(-1) x) + sin (cot...

Let `f(x) = {(sin (tan^(-1) x) + sin (cot^(-1) x)}^2 - 1`, where `|x| gt 1` and `dy/dx = 1/2 d/dx (sin^(-1) f(x))`. If `y(sqrt3) = pi/6` then `y( -sqrt3)`

A

`(5pi)/6`

B

`-pi/6`

C

`pi/3`

D

`(2pi)/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given function and differential equation. ### Step 1: Define the function and the differential equation We have: \[ f(x) = \left( \sin(\tan^{-1} x) + \sin(\cot^{-1} x) \right)^2 - 1 \] and \[ \frac{dy}{dx} = \frac{1}{2} \frac{d}{dx} (\sin^{-1} f(x)) \] ### Step 2: Simplify \( f(x) \) We know that: - \( \tan^{-1} x = \theta \) implies \( \sin(\theta) = \frac{x}{\sqrt{1+x^2}} \) - \( \cot^{-1} x = \frac{\pi}{2} - \tan^{-1} x \) implies \( \sin(\cot^{-1} x) = \cos(\tan^{-1} x) = \frac{1}{\sqrt{1+x^2}} \) Thus, \[ f(x) = \left( \frac{x}{\sqrt{1+x^2}} + \frac{1}{\sqrt{1+x^2}} \right)^2 - 1 \] \[ = \left( \frac{x + 1}{\sqrt{1+x^2}} \right)^2 - 1 \] \[ = \frac{(x + 1)^2}{1+x^2} - 1 \] \[ = \frac{(x + 1)^2 - (1 + x^2)}{1+x^2} \] \[ = \frac{x^2 + 2x + 1 - 1 - x^2}{1+x^2} \] \[ = \frac{2x}{1+x^2} \] ### Step 3: Substitute \( f(x) \) into the differential equation Now substituting \( f(x) \): \[ \frac{dy}{dx} = \frac{1}{2} \frac{d}{dx} \left( \sin^{-1} \left( \frac{2x}{1+x^2} \right) \right) \] ### Step 4: Integrate both sides Integrating both sides with respect to \( x \): \[ y = \frac{1}{2} \sin^{-1} \left( \frac{2x}{1+x^2} \right) + C \] ### Step 5: Use the initial condition to find \( C \) We know that \( y(\sqrt{3}) = \frac{\pi}{6} \). Substituting \( x = \sqrt{3} \): \[ y(\sqrt{3}) = \frac{1}{2} \sin^{-1} \left( \frac{2\sqrt{3}}{1 + 3} \right) + C \] \[ = \frac{1}{2} \sin^{-1} \left( \frac{2\sqrt{3}}{4} \right) + C \] \[ = \frac{1}{2} \sin^{-1} \left( \frac{\sqrt{3}}{2} \right) + C \] \[ = \frac{1}{2} \cdot \frac{\pi}{3} + C \] \[ = \frac{\pi}{6} + C \] Setting this equal to \( \frac{\pi}{6} \): \[ \frac{\pi}{6} + C = \frac{\pi}{6} \] \[ C = 0 \] ### Step 6: Final expression for \( y \) Thus, the final expression for \( y \) is: \[ y = \frac{1}{2} \sin^{-1} \left( \frac{2x}{1+x^2} \right) \] ### Step 7: Find \( y(-\sqrt{3}) \) Now we need to find \( y(-\sqrt{3}) \): \[ y(-\sqrt{3}) = \frac{1}{2} \sin^{-1} \left( \frac{2(-\sqrt{3})}{1 + 3} \right) \] \[ = \frac{1}{2} \sin^{-1} \left( \frac{-2\sqrt{3}}{4} \right) \] \[ = \frac{1}{2} \sin^{-1} \left( -\frac{\sqrt{3}}{2} \right) \] \[ = \frac{1}{2} \left( -\frac{\pi}{3} \right) \] \[ = -\frac{\pi}{6} \] ### Final Answer Thus, \( y(-\sqrt{3}) = -\frac{\pi}{6} \). ---

To solve the problem step by step, we start with the given function and differential equation. ### Step 1: Define the function and the differential equation We have: \[ f(x) = \left( \sin(\tan^{-1} x) + \sin(\cot^{-1} x) \right)^2 - 1 \] and \[ \frac{dy}{dx} = \frac{1}{2} \frac{d}{dx} (\sin^{-1} f(x)) \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

(d) / (dx) (cos ^ (2) (tan ^ (- 1) (sin (cot ^ (- 1) x))))

f(x) = sin^(-1)(sin x) then (d)/(dx)f(x) at x = (7pi)/(2) is

(d)/(dx)[sin^(-1)x+sin^(-1)sqrt(1-x^(2))]=

Find (d)/(dx)[sqrt(1-x^(2))sin^(-1)x-x].

Prove that (d)/(dx)(sin^(-1)x)=(1)/(sqrt(1-x^(2)) , where x in [-1,1].

(d)/(dx)[sin^(-1)sqrt(((1-x))/(2)]=

d/(dx) (sin^(-1) "" (2x)/(1+x^(2))) is equal to

(d)/(dx)[sin(2tan^(-1)sqrt((1+x)/(1-x)))]=

(d)/(dx)[sin^(-1)(x^(2)-(1)/(2))]" at "x=0

Differentiate sin ^(-1) ((2 cos x + 3 sin x )/(sqrt(13))) w.r.to x