Home
Class 12
MATHS
f(x) = (8^(2x) - 8^(-2x))/(8^(2x) + 8^(-...

`f(x) = (8^(2x) - 8^(-2x))/(8^(2x) + 8^(-2x)` find the inverse of the function

A

`1/4 log_8( (1+x)/(1-x))`

B

`1/4 log_8 (1-x)/(1+x)`

C

`1/2 log_8 (1+x)/(1-x)`

D

`1/2 log_8 (1-x)/(1+x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the function \( f(x) = \frac{8^{2x} - 8^{-2x}}{8^{2x} + 8^{-2x}} \), we can follow these steps: ### Step 1: Set the function equal to \( y \) Let \( f(x) = y \): \[ y = \frac{8^{2x} - 8^{-2x}}{8^{2x} + 8^{-2x}} \] ### Step 2: Cross-multiply to eliminate the fraction Cross-multiplying gives: \[ y(8^{2x} + 8^{-2x}) = 8^{2x} - 8^{-2x} \] ### Step 3: Expand and rearrange the equation Expanding the left side: \[ y \cdot 8^{2x} + y \cdot 8^{-2x} = 8^{2x} - 8^{-2x} \] Rearranging gives: \[ y \cdot 8^{2x} - 8^{2x} = -y \cdot 8^{-2x} - 8^{-2x} \] Factoring out \( 8^{2x} \) on the left: \[ ( y - 1 ) 8^{2x} = -( y + 1 ) 8^{-2x} \] ### Step 4: Multiply both sides by \( 8^{2x} \) This gives: \[ ( y - 1 ) ( 8^{2x} )^2 = -( y + 1 ) \] Let \( z = 8^{2x} \), then we have: \[ ( y - 1 ) z^2 = -( y + 1 ) \] ### Step 5: Solve for \( z^2 \) Rearranging gives: \[ z^2 = \frac{-(y + 1)}{y - 1} \] ### Step 6: Take the square root Taking the square root gives: \[ z = \sqrt{\frac{-(y + 1)}{y - 1}} \] Since \( z = 8^{2x} \), we can express it as: \[ 8^{2x} = \sqrt{\frac{-(y + 1)}{y - 1}} \] ### Step 7: Take logarithm to solve for \( x \) Taking logarithm base 8: \[ 2x = \log_8 \left( \sqrt{\frac{-(y + 1)}{y - 1}} \right) \] Thus, \[ x = \frac{1}{2} \log_8 \left( \sqrt{\frac{-(y + 1)}{y - 1}} \right) \] ### Step 8: Simplify the expression Using properties of logarithms: \[ x = \frac{1}{4} \log_8 \left( \frac{-(y + 1)}{y - 1} \right) \] ### Step 9: Write the inverse function Thus, the inverse function \( f^{-1}(x) \) is: \[ f^{-1}(x) = \frac{1}{4} \log_8 \left( \frac{-(x + 1)}{x - 1} \right) \] ### Summary The inverse of the function \( f(x) = \frac{8^{2x} - 8^{-2x}}{8^{2x} + 8^{-2x}} \) is: \[ f^{-1}(x) = \frac{1}{4} \log_8 \left( \frac{-(x + 1)}{x - 1} \right) \]

To find the inverse of the function \( f(x) = \frac{8^{2x} - 8^{-2x}}{8^{2x} + 8^{-2x}} \), we can follow these steps: ### Step 1: Set the function equal to \( y \) Let \( f(x) = y \): \[ y = \frac{8^{2x} - 8^{-2x}}{8^{2x} + 8^{-2x}} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

x ^ (2)-2x-8

8x^(3) - 2x =?

f(x)=sqrt((log(x-1))/(x^(2)-2x-8)) . Find the domain of f(x).

If (8/3)^(3-x) = (3/8 )^(2x-1) , then x =

If f (x) +2 f (1-x)( =x ^(2) +2AA x in R and f (x) is a differentiable function, then the vlaue of f'(8) is

If (a/b)^(x-1) = (b/a)^(2x-8) , then find the value of x.

If f(2x^(2)+(y^(2))/(8),2x^(2)-(y^(2))/(8))=xy, then

Find x: 2^(3x)=8^(2x+1)

Find the value of x if |2x+6|=-8

If f(x) = (sin^2x + 4sinx + 5)/(2 sin ^2x + 8 sin x + 8) , then range of f(x) is