Home
Class 12
MATHS
Let f(x) = x cos^(-1)(sin-|x|), x in (-...

Let `f(x) = x cos^(-1)(sin-|x|)`, `x in (-pi/2,pi/2)`

A

`f(0) = - pi/2`

B

f'(x) is not defined at x = 0

C

f'(x) is increasing in `( -pi/2, 0)` and f'(x) is decreasing in `(0, pi/2)`

D

f'(x) is decreasing in `( -pi/2, 0)` and f'(x) is increasing in `(0, pi/2)`

Text Solution

Verified by Experts

The correct Answer is:
D

NA
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Let f(x)=sin x+2cos^(2)x,x in[(pi)/(6),(2 pi)/(3)] then maximum value of f(x) is

The value of sin^(-1)(cos(cos^(-1)(cos x)+sin^(-1)(sin x))) where x in((pi)/(2),pi), is equal to (pi)/(2)(b)-pi(c)pi (d) -(pi)/(2)

Knowledge Check

  • Let f(x)=|x|+|sin x|, x in (-pi//2,pi//2). Then, f is

    A
    nowhere continuous
    B
    continuous and differentiable everywhere
    C
    nowhere differentiable
    D
    differentiable everywhere except at x=0
  • Let f(x)=e^(cos^(-1)sin(x+ pi/3)) , then

    A
    `f((8 pi)/(9))= e^((5pi)/(18))`
    B
    `f((8pi)/(9))= e^((13pi)/(18))`
    C
    `f(-(7pi)/(4))=e^((pi)/(12))`
    D
    `f(-(7pi)/(4))=e^((11pi)/(12))`
  • Let f(x) = sin^(-1) x + cos^(-1) x ". Then " pi/2 is equal to

    A
    `f(- 1/2)`
    B
    `f(k^(2) - 2k + 3), k in R`
    C
    `f(1/(1+ k^(2))), k in R`
    D
    `f(-2)`
  • Similar Questions

    Explore conceptually related problems

    Let f(x)=(k cos x)/(pi-2x) if x!=(pi)/(2) and f(x=(pi)/(2)) if x=(pi)/(2) then find the value of k if lim_(x rarr(pi)/(2))f(x)=f((pi)/(2))

    If cos2x>|sin x| and x in(-(pi)/(2),pi) then x

    The number of points where f(x) = max {|sin x| , | cos x|} , x in ( -2 pi , 2 pi ) is not differentiable is ______

    Let f(x) = {(-2sin x, ",","if" x le -(pi)/2),(A sin x + B, ",", "if"-(pi)/2 lt x lt (pi)/2 ),(cos x, ",", "if" x ge (pi)/2 ):} Then

    Let f(x) = {{:(-2 sin x, x le -pi//2),(a sin x + b, -pi//2 lt x lt pi//2),(cos x, x ge pi//2):} If f(x) is continuous everywhere then (a,b) =