Home
Class 12
MATHS
Let f(x) = x cos^(-1)(sin-|x|), x in (-...

Let `f(x) = x cos^(-1)(sin-|x|)`, `x in (-pi/2,pi/2)`

A

`f(0) = - pi/2`

B

f'(x) is not defined at x = 0

C

f'(x) is increasing in `( -pi/2, 0)` and f'(x) is decreasing in `(0, pi/2)`

D

f'(x) is decreasing in `( -pi/2, 0)` and f'(x) is increasing in `(0, pi/2)`

Text Solution

Verified by Experts

The correct Answer is:
D

NA
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=|x|+|sin x|, x in (-pi//2,pi//2). Then, f is

Let f(x)=e^(cos^(-1)sin(x+ pi/3)) , then

Let f(x)=sin x+2cos^(2)x,x in[(pi)/(6),(2 pi)/(3)] then maximum value of f(x) is

Let f(x) = sin^(-1) x + cos^(-1) x ". Then " pi/2 is equal to

The value of sin^(-1)(cos(cos^(-1)(cos x)+sin^(-1)(sin x))) where x in((pi)/(2),pi), is equal to (pi)/(2)(b)-pi(c)pi (d) -(pi)/(2)

Let f(x)=(k cos x)/(pi-2x) if x!=(pi)/(2) and f(x=(pi)/(2)) if x=(pi)/(2) then find the value of k if lim_(x rarr(pi)/(2))f(x)=f((pi)/(2))

If cos2x>|sin x| and x in(-(pi)/(2),pi) then x

The number of points where f(x) = max {|sin x| , | cos x|} , x in ( -2 pi , 2 pi ) is not differentiable is ______

Let f(x) = {(-2sin x, ",","if" x le -(pi)/2),(A sin x + B, ",", "if"-(pi)/2 lt x lt (pi)/2 ),(cos x, ",", "if" x ge (pi)/2 ):} Then