Home
Class 12
MATHS
Find the sum, sum(k=1) ^(20) (1+2+3+.......

Find the sum, `sum_(k=1) ^(20) (1+2+3+.....+k)`

A

1240

B

1340

C

1440

D

1540

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the sum \( \sum_{k=1}^{20} (1 + 2 + 3 + \ldots + k) \), we can break it down step by step. ### Step 1: Understand the Inner Sum The expression \( 1 + 2 + 3 + \ldots + k \) represents the sum of the first \( k \) natural numbers. The formula for the sum of the first \( k \) natural numbers is given by: \[ S_k = \frac{k(k + 1)}{2} \] ### Step 2: Rewrite the Summation We can rewrite our original summation using the formula for \( S_k \): \[ \sum_{k=1}^{20} (1 + 2 + 3 + \ldots + k) = \sum_{k=1}^{20} S_k = \sum_{k=1}^{20} \frac{k(k + 1)}{2} \] This simplifies to: \[ \sum_{k=1}^{20} S_k = \frac{1}{2} \sum_{k=1}^{20} k(k + 1) \] ### Step 3: Expand the Summation We can expand \( k(k + 1) \) as follows: \[ k(k + 1) = k^2 + k \] Thus, we can split the summation: \[ \sum_{k=1}^{20} k(k + 1) = \sum_{k=1}^{20} k^2 + \sum_{k=1}^{20} k \] ### Step 4: Use Known Formulas for Summations We will use the formulas for the sum of the first \( n \) natural numbers and the sum of the squares of the first \( n \) natural numbers: 1. The sum of the first \( n \) natural numbers: \[ \sum_{k=1}^{n} k = \frac{n(n + 1)}{2} \] 2. The sum of the squares of the first \( n \) natural numbers: \[ \sum_{k=1}^{n} k^2 = \frac{n(n + 1)(2n + 1)}{6} \] For \( n = 20 \): - Calculate \( \sum_{k=1}^{20} k \): \[ \sum_{k=1}^{20} k = \frac{20(20 + 1)}{2} = \frac{20 \times 21}{2} = 210 \] - Calculate \( \sum_{k=1}^{20} k^2 \): \[ \sum_{k=1}^{20} k^2 = \frac{20(20 + 1)(2 \times 20 + 1)}{6} = \frac{20 \times 21 \times 41}{6} \] First, calculate \( 20 \times 21 = 420 \), then \( 420 \times 41 = 17220 \), and finally: \[ \frac{17220}{6} = 2870 \] ### Step 5: Combine the Results Now we can combine the results: \[ \sum_{k=1}^{20} k(k + 1) = \sum_{k=1}^{20} k^2 + \sum_{k=1}^{20} k = 2870 + 210 = 3080 \] ### Step 6: Final Calculation Now substitute back into our earlier expression: \[ \sum_{k=1}^{20} (1 + 2 + 3 + \ldots + k) = \frac{1}{2} \sum_{k=1}^{20} k(k + 1) = \frac{1}{2} \times 3080 = 1540 \] ### Final Answer Thus, the sum \( \sum_{k=1}^{20} (1 + 2 + 3 + \ldots + k) \) is: \[ \boxed{1540} \]

To solve the problem of finding the sum \( \sum_{k=1}^{20} (1 + 2 + 3 + \ldots + k) \), we can break it down step by step. ### Step 1: Understand the Inner Sum The expression \( 1 + 2 + 3 + \ldots + k \) represents the sum of the first \( k \) natural numbers. The formula for the sum of the first \( k \) natural numbers is given by: \[ S_k = \frac{k(k + 1)}{2} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum sum_(k=0)^(10)2^(20)C_(k)

Find the sum sum_(k=1) (""^nC_(2k-1))/(2k)

sum_(k=1)^n k^3=

Find the sum sum_(k=0)^n ("^nC_k)/(k+1)

Find the value off sum_(k1)^10(2+3^k)

The sum sum_(k=1)^(10)k.k! equals.

Find the sum of the series sum_(k=1)^(360)((1)/(k sqrt(k+1)+(k+1)sqrt(k)))

The sum sum _ ( k = 1 ) ^ ( 20 ) k ( 1 ) / ( 2 ^ k ) is equal to l - (11) /(m ^ ( 19 )) . The value of ( l + m ) is ______ .

The sum sum_(k=1)^(20) k (1)/(2^(k)) is equal to

If sum_(k=1)^(n)k=45, find the value of sum_(k=1)^(n)k^(3).