Home
Class 10
MATHS
" Show that "lim(x rarr2^(-))(x)/([x])!=...

" Show that "lim_(x rarr2^(-))(x)/([x])!=lim_(x rarr2^(+))(x)/([x])

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr2)(x-2)/(x+1)=

let l=lim_(x rarr2)([x])/({x}) and m=lim_(x rarr2)({x})/([x])

lim_(x rarr0)(2^(2x)-1)/(x)

lim_(x rarr0)(2^(x)-3^(x))/(x)

Show that lim_(x rarr0+)((2|x|)/(x)+x+1)=3

lim_(x rarr0)x^(2)cos(2/x)

Compute lim_(a rarr2^(+))([x]+x) and lim_(a rarr2^(-))([x]+x) .

lim_(x rarr2)(f(x)-f(2))/(x-2)=

lim_(x rarr2)(x^(2)-3x+2)/(x-2)

Show that lim_(x rarr oo)(sqrt(x^(2)+x+1)-x)!=lim_(x rarr oo)(sqrt(x^(2)+1)-x)