Home
Class 11
MATHS
If |z1-2|<2, |z2-4|<4,|z3-6|<6, then |...

If `|z_1-2|<2, |z_2-4|<4,|z_3-6|<6`, then `|z_1+z_2+z_3|` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement I: If |z_1+z_2|=|z_1|+|z_2|, then Im(z_1/z_2)=0 (z_1,z_2 !=0) Statement II: If |z_1+z_2|=|z_1|+|z_2| then origin, z_1, z_2 are collinear with 'z_1' and z_2 lies on the same side of the origin (z_1,z_2 !=0)

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

If z_1ne-z_2 and |z_1+z_2|=|1/z_1 + 1/z_2| then :

If z_1ne-z_2 and |z_1+z_2|=|1/z_1 + 1/z_2| then :

For any two complex numbers z_1 and z_2 prove that: |\z_1+z_2|^2 +|\z_1-z_2|^2=2[|\z_1|^2+|\z_2|^2]

If |z_(1)|=1,|z_(2)|=2,|z_(3)|=3 ,then |z_(1)+z_(2)+z_(3)|^(2)+|-z_(1)+z_(2)+z_(3)|^(2)+|z_(1)-z_(2)+z_(3)|^(2)+|z_(1)+z_(2)-z_(3)|^(2) is equal to

Let z_1,z_2 be complex numbers with |z_1|=|z_2|=1 prove that |z_1+1| +|z_2+1| +|z_1 z_2+1| geq2 .

If z_1 , z_2 are nonreal complex and |(z_1+z_2)/(z_1-z_2)| =1 then (z_1)/(z_2) is