Home
Class 12
MATHS
If x > 0, y > 0, z>0 and x + y + z = 1 t...

If `x > 0, y > 0, z>0 and x + y + z = 1` then the minimum value of `x/(2-x)+y/(2-y)+z/(2-z)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If xyz = 1 and x, y, z gt 0 then the minimum value of the expression (x+2y)(y+2z)(z+2x) is

If xyz = 1 and x, y, z gt 0 then the minimum value of the expression (x+2y)(y+2z)(z+2x) is

If x,y,z , t gt 0 and xyzt=81 then minimum value of x+2y+z+8t is

If x > y > z >0, then find the value of cot^(-1)((x y+1)/(x-y))+cot^(-1)((y z+1)/(z y-z))+cot^(-1)((z x+1)/(z-x))

If x > y > z >0, then find the value of cot^(-1)(x y+1)/(x-y)+cot^(-1)(y z+1)/(z y-z)+cot^(-1)(z x+1)/(z-x)

If x > y > z >0, then find the value of cot^(-1)(x y+1)/(x-y)+cot^(-1)(y z+1)/(z y-z)+cot^(-1)(z x+1)/(z-x)

Let A=[(0, 2y,z),(x,y,-z),(x,-y,z)] such that A^(T)A=I , then the value of x^(2)+y^(2)+z^(2) is