Home
Class 12
MATHS
If harmonic mean of numbers 1/2,1/2^2,1/...

If harmonic mean of numbers `1/2,1/2^2,1/2^3,.............1/2^10` is `lambda/(2^10-1)` then `lambda` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If harmonic mean of (1)/(2),(1)/(2^(2)),(1)/(2^(3)),...,(1)/(2^(10)) is (lambda)/(2^(10)-1) , then lambda=

If harmonic mean of (1)/(2),(1)/(2^(2)),(1)/(2^(3)),...,(1)/(2^(10)) is (lambda)/(2^(10)-1) , then lambda=

If harmonic mean of (1)/(2),(1)/(2^(2)),(1)/(2^(3)),...,(1)/(2^(10)) is (lambda)/(2^(10)-1) , then lambda=

If harmonic mean of (1)/(2),(1)/(2^(2)),(1)/(2^(3)),...,(1)/(2^(10)) is (lambda)/(2^(10)-1) , then lambda=

A= [{:(0,3),(2,0):}] and A^(-1)=lambda (adj, A) then lambda is equal to

A= [{:(0,3),(2,0):}] and A^(-1)=lambda (adj, A) then lambda is equal to

Let N=(2+1)(2^(2)+1)(2^(4)+1).........(2^(32)+1)+1 and N=2^(lambda) then the value of lambda is

2(sin2^(@)tan1^(@)+sin4^(@)tan1^(@)+.......+sin178^(@)tan1^(@)) equal to lambda tan1^(@), then lambda is equal to