Home
Class 11
MATHS
If f(x)=x/(2x-1), then domain of f(f(f(x...

If `f(x)=x/(2x-1),` then domain of `f(f(f(x)))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of f(x)=(1)/(x^(2)+1) is

If f(x)=(a-x)/(a+x) , the domain of f^(-1)(x) contains

If f(x)=(a-x)/(a+x) , the domain of f^(-1)(x) contains

If f(x)=(a-x)/(a+x) , the domain of f^(-1)(x) contains

If f(x)=(a-x)/(a+x) , the domain of f^(-1)(x) contains

If f(x)=(a-x)/(a+x) , the domain of f^(-1)(x) contains

The domain of f(x)= (1)/( x^2 +1) is

If f(x)=sqrt(log_((1)/(2))(x^(2)-2x+2)), then domain of f(x) is

If domain of f(x) be (-1, 2), then (1) domain of f(sin x) will be (-oo, oo) (2) domain of f(ln x) will be (1/e, e^2) (3) domain of f(2x-3) will be (1,5/2) (4) domain of f([x]) will be [0, 2), where [x]<=x

If domain of f(x) be (-1,2), then (1) domain of f(sin x) will be (-oo,oo)(2) domain of f(ln x) will be ((1)/(e),e^(2))(3) domain of f(2x-3) will be (1,5/2)(4) domain of f([x]) will be [0,2), where [x]<=x