Home
Class 12
MATHS
The function f(x) = {x+asqrt2 sinx, 0<=...

The function `f(x) = {x+asqrt2 sinx, 0<=x<=pi/4 and 2x cotx+b, pi/4<=x<=pi/2 and a cos 2x-bsinx, pi/2,x<=pi` is continuous for `0<= x <=pi` ,then value of `a,b` are

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the values of a and b so that the function f(x)={{:(x+asqrt2 sin x", "0 le x le pi//4),(2x cot x + b", "pi//4 le x le pi//2),(a cot 2x - b sin x", "pi//2 lt x le pi):} is continuous for 0 le x le pi .

The function f(x)=|sinx|

The function f(x)=1+|sinx| is :

Prove that the function f(x) = {:{((sinx)/x , x < 0),(x^2 +1, x ge0):} is continuous.

If 0lexle2pi , the function f(x) = sinx is minimum at -

Show that the function given by f(x) = sinx is increasing in (0,pi/2) .

The function f(x)=1+x(sinx)[cosx], 0ltxlepi//2 , where [.] denotes greatest integer function

The function f(x)=1+x(sinx)[cosx], 0ltxlepi//2 , where [.] denotes greatest integer function

The function f(x)=1+x(sinx)[cosx], 0ltxlepi//2 , where [.] denotes greatest integer function