Home
Class 12
MATHS
The function f(x)={(sin3x)/x ,x!=0k/2,x...

The function `f(x)={(sin3x)/x ,x!=0k/2,x=0` is continuous of `x=0,t h e nk=` 3 (b) 6 (d) 9 (d) 12

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)={((sin3x)/x ,x!=0),(k/2,x=0):} is continuous of x=0,t h e nk= (a) 3 (b) 6 (d) 9 (d) 12

Find k if the function f(x)={(sin3x)/x ,x!=0;k/2,x=0 is continuous at x=0 . (a)3 (b) 6 (d) 9 (d) 12

If the function f(x)={(cosx)^(1/x),x!=0k ,x=0 is continuous at x=0 , then the value of k is 0 (b) 1 (c) -1 (d) e

If the function f(x)={(cosx)^(1/x),x!=0k ,x=0 is continuous at x=0 , then the value of k is 0 (b) 1 (c) -1 (d) e

[f(x)={[(sin3x)/(sin x),,x!=0],[k,,x=0] is continuous,if k is

If the function f(x) = {((sin 3x)/x, x ne 0),(k/x, x = 0):} is continuous at x = 0, then k =

If f(x)={((sin3x)/(e^(2x)-1),,,x!=0),(k-2,:,x=0):} is Continuous at x=0, then k=

If the function f(x)=(sin 3x)/(x)" for "x ne 0 and f(0)=k/2 is continuous at x=0 then k=

If f(x)=(2x+3sin x)/(3x+2sin x),x!=0 is continuous at x=0, then find f(0)