Home
Class 12
MATHS
If vecA1 and vecA2 are two non-collinear...

If `vecA_1` and `vecA_2` are two non-collinear unit vectors and if `|vecA_1+vecA_2|=sqrt3` then the value of `(vecA_1-vecA_2).(2vecA_1+vecA_2)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca and vecb are two non-collinear unit vectors and if |veca_(1) + veca_(2)|=sqrt(3) , then the value of (veca_(1) -veca_(2))(2veca_(1) +veca_(2)) is:

If veca and vecb are two non collinear unit vectors and |veca+vecb|= sqrt3 , then find the value of (veca- vecb)*(2veca+ vecb)

If veca and vecb are two non collinear unit vectors and |veca+vecb|=sqrt(3) then find the value of (veca-vecb).(2veca+vecb)

If veca and vecb are two non collinear unit vectors and iveca+vecbi=sqrt(3) then find the value of (veca-vecb).(2veca+vecb)

If veca and vecb are two non collinear unit vectors and iveca+vecbi=sqrt(3) then find the value of (veca-vecb).(2veca+vecb)

If vec a \ a n d \ vec b are two non-collinear unit vector, and ∣ ​ veca + vecb ∣ ​ = 3 ​ then (2 veca −5 vecb ).(3 veca + vecb ) =

If vec a \ a n d \ vec b are two non-collinear unit vector, and ∣ ​ veca + vecb ∣ ​ = 3 ​ then (2 veca −5 vecb ).(3 veca + vecb ) =

It is given that |vecA_(1)|=2,|vecA_(2)|=3 and |vecA_(1)+vecA_(2)|=3 Find the value of (vecA_(1)+vecA_(2)).(2vecA_(1)-3vecA_(2))