Home
Class 12
MATHS
Prove the following: "cos"{tan^(-1){sin(...

Prove the following: `"cos"{tan^(-1){sin(cot^(-1)x)}}=` `sqrt((1+x^2)/(2+x^2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Directions (Q. Nos. 16-25) Prove the following "cos"["tan"^(-1){"sin"("cot"^(-1)x)}]=sqrt((x^(2)+1)/(x^(2)+2)) .

Prove the following: cos[tan^-1{sin(cot^-1x)}]=sqrt((1+x^2)/(2+x^2))

Prove that costan^(-1)sin cot^(-1)x=sqrt((x^2+1)/(x^2+2))

Prove that : cos [ tan^(-1) { sin (cot^(-1) x)}]= sqrt((x^2 +1)/(x^2 +2))

Prove that cos tan^(-1)sin cot^(-1)x=sqrt((1+x^2)/(2+x^2) .

Prove that cos[tan^(-1). {sin (cot^(-1)x)}]=sqrt((1+x^(2))/(2+x^(2))) .

Prove that cos[Tan^(-1){sin(Cot^(-1)x)}] = sqrt((x^(2)+1)/(x^(2)+2))

Prove that cos (tan^(-1)(sin(cot^-1x))) =sqrt((x^2+1)/(x^2+2))