Home
Class 11
MATHS
tan^(-1)x+tan^(-1)(2x)/(1-x^(2))=(pi)/(3...

tan^(-1)x+tan^(-1)(2x)/(1-x^(2))=(pi)/(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

2 tan ^(-1) ""(2x)/(1-x^(2))=(pi)/(3)

tan^(-1)x+tan^(-1)(2x)/(1-x^(2))=pi+tan^(-1)(3x-x^(3))/(1-3x^(2)),(x>0)

tan^(- 1)x+tan^(- 1)\ (2x)/(1-x^2)=pi+tan^(- 1)\ (3x-x^3)/(1-3x^2),(x >0) is true if

tan^(-1)x+tan^(-1)(1)/(x)={[(pi)/(2), if x>0-(pi)/(2), if x<0

If tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(6), then prove that x^(2)=2sqrt(3).

tan^(-1)((a)/(x))+tan^(-1)((b)/(x))=(pi)/(2) then x=

Solve for x:tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=(pi)/(4)

Solve tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=(pi)/(4)

Solve : tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=(pi)/(4)