Home
Class 12
MATHS
If f(x)=((x^l)/(x^m))^(l+m)((x^m)/(x^n))...

If `f(x)=((x^l)/(x^m))^(l+m)((x^m)/(x^n))^(m+n)((x^n)/(x^l))^(n+l)`, then `f'(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=((x^l)/(x^m))^(l+m)((x^m)/(x^n))^(m+n)((x^n)/(x^l))^(n+l) , then f^(prime)(x) is equal to (a) 1 (b) 0 (c) x^(l+m+n) (d) none of these

If f(x) = (x^l/x^m)^(l+m) (x^m/x^n)^(m+n) (x^n/x^l)^(n+l) , then find f'(x).

(x^l /x^m)^n.(x^m/x^n)^l. (x^n/x^l)^m=

Simplify: (i)\ ((x^(a+b))/(x^c))^(a-b)\ ((x^(b+c))/(x^a))^(b-c)\ ((x^(c+a))/(x^b))^(c-a) (ii)\ ((x^l)/(x^m))^(1/(lm))\ xx\ ((x^m)/(x^n))^(1/(mn))\ xx\ \ ((x^n)/(x^l))^(1/(ln))

((x^(m))/(x^(n)))^(m+n)*((x^(n))/(x^(l)))^(n+l)*((x^(l))/(x^(m)))^(l+m)

Prove that : ((x^m)/(x^n))^(m+n-l) xx((x^n)/(x^l))^(n+l-m)xx((x^l)/(x^m))^(l+m-n) =1 .

Prove that : ((x^m)/(x^n))^(m+n) xx((x^n)/(x^l))^(n+l)xx((x^l)/(x^m))^(l+m) =1 .

(x^(m+n)xxx^(n+l)xxx^(l+m))/(x^mxxx^nxxx^l)

Find the value of root(ln)((x^l)/(x^n))xxroot(mn)((x^n)/(x^m))xxroot(lm)((x^m)/(x^l)) .

Prove root(ln)((x^(l))/(x^(n)))xxroot(nm)((x^(n))/(x^(m)))xxroot(ml)((x^(m))/(x^(l)))=1