Home
Class 12
MATHS
" (B) "quad |z|=1&z^(2n)+1!=0" then "(z^...

" (B) "quad |z|=1&z^(2n)+1!=0" then "(z^(n))/(z^(2n)+1)-(bar(z)^(n))/(bar(z)^(2n)+1)" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

|z|=1&z^(2n)+1!=0 then (z^(n))/(z^(2n)+1)-(z^(n))/(z^(2n)+1) is equal to

If arg(z)=-(pi)/(4) then the value of arg((z^(5)+(bar(z))^(5))/(1+z(bar(z))))^(n) is

If z + (1)/(z) = 2 cos theta, z in "C then z"^(2n) - 2z^(n) cos (n theta) is equal to

For two unimodular complex numbers Z_(1) and Z_(2), [(bar(z_(1)),-z_(2)),(bar(z_(2)),z_(1))]^(-1)[(z_(1),z_(2)),(-bar(z_(2)),bar(z_(1)))]^(-1) is equal to a) [(z_(1),z_(2)),(bar(z)_(1),bar(z)_(2))] b) [(1,0),(0,1)] c) [(1//2,0),(0,1//2)] d)None of these

If arg(z)=-pi/4 then the value of arg((z^5+(bar(z))^5)/(1+z(bar(z))))^n is

If z_(1),z_(2),……………,z_(n) lie on the circle |z|=R , then |z_(1)+z_(2)+…………….+z_(n)|-R^(2)|1/z_(1)+1/z_(2)+…….+1/z-(n)| is equal to

If z_(1),z_(2),……………,z_(n) lie on the circle |z|=R , then |z_(1)+z_(2)+…………….+z_(n)|-R^(2)|1/z_(1)+1/z_(2)+…….+1/z-(n)| is equal to

If z_(1), z_(2),……..,z_(n) are complex numbers such that |z_(1)| = |z_(2)| = …….. = |z_(n)| = 1 , then |z_(1) + z_(2) +……..+ z_(n)| is equal to a) |z_(1)z_(2)z_(3)…..z_(n)| b) |z_(1)|+|z_(2)|+…….+|z_(n)| c) |(1)/(z_(1)) + (1)/(z_(2)) + ……….+ (1)/(z_(n))| d)n

If n is an integer and z=-1+isqrt3," then "z^(2n)+2^(n).z^(n)+2^(2n)