Home
Class 12
MATHS
" (i) "A=[[1],[-4],[3]],B=[[-1,2,1]]" (i...

" (i) "A=[[1],[-4],[3]],B=[[-1,2,1]]" (ii) "A=

Promotional Banner

Similar Questions

Explore conceptually related problems

Compute the indicated products.(i) [[a, b],[-b ,a]][[a,-b],[b, a]] (ii) [[1],[ 2],[ 3]][[2, 3 ,4]] (iii) [[1,-2],[ 2 ,3]] [[1 ,2, 3],[ 2, 3 ,1]] (iv) [[2, 3 ,4 ],[3, 4 ,5],[ 4, 5, 6]][[1,-3, 5],[ 0, 2, 4],[ 3, 0, 5]] (v) [[2,1],[3,2],[-1,1]] [[1, 0, 1],[-1, 2 ,1]] (vi) [[3,-1, 3],[1,0,2]] [[2 ,-3],[ 1, 0],[ 3, 1]]

Compute the indicated products.(i) [[a, b],[-b ,a]][[a,-b],[b, a]] (ii) [[1],[ 2],[ 3]][[2, 3 ,4]] (iii) [[1,-2],[ 2 ,3]] [[1 ,2, 3],[ 2, 3 ,1]] (iv) [[2, 3 ,4 ],[3, 4 ,5],[ 4, 5, 6]][[1,-3, 5],[ 0, 2, 4],[ 3, 0, 5]] (v) [[2,1],[3,2],[-1,1]] [[1, 0, 1],[-1, 2 ,1]] (vi) [[3,-1, 3],[1,0,2]] [[2 ,-3],[ 1, 0],[ 3, 1]]

If A = [(2,2,1), (1,3,1), (1,2,2)] then A^-1+(A-5I) (AI)^2 = (i) 1/ 5 [[4,2, -1], [-1,3,1], [-1,2,4]] (ii) 1/5 [[4, -2, -1], [-1, 3, -1], [-1, -2,4]] (iii) 1/3 [[4,2, -1], [-1,3,1], [-1,2,4]] (iv) 1/3 [[4, -2, -1], [-1,3, -1], [-1, -2,4]]

Compute the indicated products. i) [[a , b],[ -b , a]] [[a, -b],[ b, a]] ii) [[1], [ 2], [3]][[2, 3 ,4]] iii) [[1, (-2)],[ 2 ,3]] [[1 , 2 ,3],[ 2, 3 , 1]] iv) [[2 , 3 , 4 ],[ 3 , 4 , 5 ],[ 4, 5 ,6]] [[1 , -3, 5],[ 0, 2, 4],[ 3, 0, 5]] v) [[2 , 1],[ 3 , 2],[ (-1), 1]] [[1, 0 , 1],[ (-1), 2, 1]] vi) [[3, (-1), 3],[ (-1), 0, 2]][[2, -3],[ 1 , 0],[ 3, 1]]

For the matrices A and B, verify that (AB)'=B'A. (i) A=[{:(1),(3),(6):}],B=[2" "4," "5] (ii) A=[{:(5,3,-1),(2,0,4):}]B=[{:(-3,2),(2,1),(-1,0):}]

Compute the products A B and B A whichever exists in each of the following cases: A=[[1,-2],[ 2, 3]] and B=[[1, 2,3],[ 2,3, 1]] (ii) A=[[3, 2],[-1, 0],[-1, 1]] and B=[[4, 5, 6],[ 0, 1 ,2]]

Show that A B!=B A in each of the following cases: A=[[1, 3,-1],[2,-1,-1],[3, 0,-1]] and B=[[-2, 3,-1],[-1, 2,-1],[-6, 9,-4]] (ii) A=[[10,-4,-1],[-1,1, 5],[0, 9,51]] and B=[[1, 2, 1],[ 3, 4, 2],[ 1, 3, 2]]

If A=[[2,3],[1,-4]] and B=[[1,-2],[-1,3]] , then verify that (A B)^(-1)=B^(-1)A^(-1)

If A=[[2,3,1] , [1,3,2] , [1,2,3]], B=[[4,1,2] , [2,4,1] , [1,4,2]] verify that (A+B)^T=A^T+B^T

If A=[[2, 3],[ 1, -4]] and B=[[1, -2],[ -1, 3]] , then verify that (A B)^(-1)=B^(-1) A^(-1)