Similar Questions
Explore conceptually related problems
Recommended Questions
- lim(n rarr oo)(n^(p)sin^(2)(n!))/(n+1),0<p<1," is equal to "
Text Solution
|
- Evaluate: ("lim")(nvecoo)(n^psin^2(n !))/(n+1)
Text Solution
|
- lim(n)rarr0((p^((1)/(n))+q^((1)/(n)))/(2))^(n),p,q>0 equals
Text Solution
|
- lim(n rarr0){(p^((1)/(n))+q^((1)/(n)))/(2)}^(n),p,q>0
Text Solution
|
- lim (n rarr oo) (n ^ (alpha) sin ^ (2) n!) / (n + 1), 0 <alpha<1, is e...
Text Solution
|
- lim (n rarr oo) (1) / ((n) ^ ((1) / (n))) is equal to
Text Solution
|
- lim (n rarr oo) (1 ^ (p) + 2 ^ (p) + 3 ^ (p) + ......... + n ^ (p)) / ...
Text Solution
|
- lim (n rarr oo) ((n!) ^ ((1) / (n))) / (n) equals
Text Solution
|
- lim(n to oo) (n^(p) sin^(2)(n!))/(n +1) , 0 lt p lt 1, is equal to-
Text Solution
|