Home
Class 12
MATHS
y=cos(log x+e^(x))...

y=cos(log x+e^(x))

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate the following y=cos(log(e^x))

Find (dy)/(dx)(i)y=e^(-x^(2))sin(log x)(ii)y=sqrt(a+sqrt(a+x))(iii)y=cos(log x)^(2)

Solve the following differential equations : (dy)/(dx)= (x e^(x) log x + e^(x))/(x cos y)

Solve : (dy)/(dx)=(x e^(x)log x +e^(x))/(x cos y) .

If y = log (cos e^(x)), then (dy)/(dx) is:

The solution of the DE x cos y dy = (x e ^(x) log x + e ^(x)) dx is