Home
Class 12
MATHS
[" 5.If the function "f(x)" defined by "...

[" 5.If the function "f(x)" defined by "],[qquad f(x)={[(log(1+ax)-log(1-bx))/(x)," if ",x!=0],[k,," if ",x=0]],[" is continuous at "x=0," find "k.]

Promotional Banner

Similar Questions

Explore conceptually related problems

If the function f(x) defined by f(x)={((log(1+ax)-log(1-bx))/(k)", if "x!=0),(" k, if "x=0):} is continuous at x=0 , then find the value of k.

f(x)={(log(1+2ax)-log(1-bx))/(x),x!=0x=0

If the function f(x) defined by f(x)=(log(1+3x)-log(1-2x))/(x),x!=0 and k

if the function f(x) defined by f(x)=(log(1+ax)-log(1-bx))/(x), if x!=0 and k if x=0 is continuous at x=0, find k

if the function f(x) defined by f(x)= (log(1+a x)-"log"(1-b x))/x , if x!=0 and k if x=0 is continuous at x=0 , find k.

If the function f(x) defined by f(x)= (log(1+3x)-"log"(1-2x))/x , x!=0 and k , x=0. Find k.

If f(x)={((log(1+2ax)-log(1-bx))/(x)",", x ne 0),(k",", x =0):} is continuous at x = 0, then value of k is

If f(x) {:(=(log (1+3x )-log(1-2x))/x", if " x != 0 ),(=a", if " x =0 ):} is continuous at x = 0 , then a =

If f(x) = {{:((log(1+2ax)-log(1-bx))/(x)",",x ne 0),(" "k",",x = 0):} is continuous at x = 0, then k is equal to

If f(x) = {{:((log(1+2ax)-log(1-bx))/(x)",",x ne 0),(" "k",",x = 0):} is continuous at x = 0, then k is equal to