Home
Class 12
MATHS
y=tan^(-1)((sqrt(1+sin x)+sqrt(1-sin x))...

y=tan^(-1)((sqrt(1+sin x)+sqrt(1-sin x))/(1+sin x-sqrt(1-sin x)))," find "(2y)/(del x)

Promotional Banner

Similar Questions

Explore conceptually related problems

cot^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]=

(cot^(-1){sqrt(1+sin x)+sqrt(1-sin x)})/(sqrt(1+sin x)-sqrt(1-sin x))

If y=(tan^(-1)(sqrt(1+sin x)+sqrt(1-sin x)))/(sqrt(1+sin x)-sqrt(1-sin x)) find the value of (dy)/(dx)

cot^(-1)((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=(x)/(2)

int_(0)^(pi//2)tan^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]\ dx

If y=cot^(-1){(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))} Show that (dy)/(dx) is independent of x]}

Prove that cot^(-1) ((sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))) = (x)/(2), x in (0, (pi)/(4))

Prove that cot^(-1) ((sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))) = (x)/(2), x in (0, (pi)/(4))

If x in(pi,(3 pi)/(2)) then the value of tan^(-1)((sqrt(1-sin x)+sqrt(1+sin x))/(sqrt(1-sin x)-sqrt(1+sin x)))

Differentiate tan^(-1) ((sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))) w.r.t.x .