Home
Class 11
MATHS
[" 1f "f(x)=(1)/((2x+1))" and "x!=(-1)/(...

[" 1f "f(x)=(1)/((2x+1))" and "x!=(-1)/(2)" then prove that "f{(x)}=2x+1],[x!=(-3)/(2)]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={(x-1)/(2x^(2)-7x+5), when x!=1-(1)/(3), when x=1, prove that f'(1)=-(2)/(9)

If f(x) = (1)/(2x-1) , x ne (1)/(2) , then show that : f(f(x)) = (2x-1)/(3-2x) , x ne (3)/(2)

If f(x)=log[(1+x)/(1-x)], then prove that f[(2x)/(1+x^2)]=2f(x)dot

If f(x)=log[(1+x)/(1-x)], then prove that f[(2x)/(1+x^2)]=2f(x)dot

If f(x)=log[(1+x)/(1-x)], then prove that f[(2x)/(1+x^2)]=2f(x)dot

If f(x)=log[(1+x)/(1-x)], then prove that f[(2x)/(1+x^2)]=2f(x)dot

If 2f(x-1)-f((1-x)/x)=x , then prove that 3f(x)=2(x+1)+1/(x+1) .

If f(x)=log[(1+x)/(1-x)], then prove that f[(2x)/(1+x^(2))]=2f(x)

If f(x)="log"(1+x)/(1-x) , then prove that: f((2x)/(1+x^(2)))=2f(x)

If f(x)="log"(1+x)/(1-x) , then prove that: f((2x)/(1+x^(2)))=2f(x)