Home
Class 11
MATHS
[y(16)^(V)," Prove that "(n!)/(r!(n-r)!)...

[y_(16)^(V)," Prove that "(n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!)],[,=((n+1)!)/(r!(n-r+1)!)]

Promotional Banner

Similar Questions

Explore conceptually related problems

(ii) (n!)/((n-r)!r!)+(n!)/((n-r+1)!(r-1)!)=((n+1)!)/(r!(n-r+1)!)

Prove that (n-r+1)(n!)/((n-r+1)!)=(n!)/((n-r)!)

Prove that (n-r+1)(n!)/((n-r+1)!)=(n!)/((n-r)!)

Prove that (n-r+1)((n!)/((n-r+1)!))=((n!)/((n-r)!))

Prove that : (i) (n!)/(r!)=n(n-1)(n-2)...(r+1) (ii) (n-r+1)*(n!)/((n-r+1)!)=(n!)/((n-r)!) (iii) (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!)=((n+1)!)/(r!(n-r+1)!)

Prove that ((n-1)!)/((n-r-1)!)+r.((n-1)!)/((n-r)!)=(n!)/((n-r)!)

Prove that: n(n-1)(n-2)....(n-r+1)=(n !)/((n-r)!)

Prove that n(n-1)(n-2) ...(n-r+1)=(n!)/((n-r)!).

Prove that: n(n-1)(n-2)…..(n-r+1)=(n!)/((n-r)!)

Prove that: ""^(n-1)P_r=(n-r)* ""^(n-1)P_(r-1)