Home
Class 12
MATHS
sqrt(x+1)-sqrt(x-1)=sqrt(4x-1)...

`sqrt(x+1)-sqrt(x-1)=sqrt(4x-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : int(sqrt(x+1)-sqrt(x-1))/(sqrt(x+1)+sqrt(x-1))dx

If x>1 and (sqrt(x+1)+sqrt(x-1))/(sqrt(x+1)-sqrt(x-1))=2 then x

find x: (sqrt(x+1)+sqrt(x-1))/(sqrt(x+1)-sqrt(x-1))=3/7

(sqrt(x+1)+sqrt(x-1))/(sqrt(x+1)-sqrt(x-1))=3

Solve sqrt(x+3-4sqrt(x-1))+sqrt(x+8-6sqrt(x-1))=1

Solve sqrt(x+3-4sqrt(x-1))+sqrt(x+8-6sqrt(x-1))=1

Solve sqrt(x+3-4sqrt(x-1))+sqrt(x+8-6sqrt(x-1))=1

( Solve )/(sqrt(x+3-4sqrt(x-1)))+sqrt(x+8-6sqrt(x-1))=1

Solve sqrt(x+3-4sqrt(x-1))+sqrt(x+8-6sqrt(x-1))=1