Home
Class 11
MATHS
If ("log"a)/(3) = ("log"b)/(4) = ("log"c...

If `("log"a)/(3) = ("log"b)/(4) = ("log"c)/(5)`, then ca equals

Promotional Banner

Similar Questions

Explore conceptually related problems

("log"_(2)a)/(3) = ("log"_(2)b)/(4) = ("log"_(2)c)/(5lambda) " and " a^(-3) b^(-4) c = 1 " then " lambda =

("log"_(2)a)/(3) = ("log"_(2)b)/(4) = ("log"_(2)c)/(5lambda) " and " a^(-3) b^(-4) c = 1 " then " lambda =

If "log"_(x) (4x^("log"_(5)x) + 5) = 2 "log"_(5)x , then x equals to

If (log x)/(b-c) = (log y)/(c-a) = (log z)/(a-b) , then prove that x^(b^2+bc+c^2).y^(c^2+ca+a^2).z^(a^2+ab+b^2)=1

If x ="log"_(a)(bc), y ="log"_(b)(ca) " and "z = "log"_(c)(ab), then which of the following is correct?

If x ="log"_(a)(bc), y ="log"_(b)(ca) " and "z = "log"_(c)(ab), then which of the following is correct?

If a=log.(3)/(2),b=log.(4)/(25) and c = log.(5)/(9) , then a + b+ c = ______.

Prove "log"(a^(2))/(bc) + "log"(b^(2))/(ca) + "log"(c^(2))/(ab) = 0 .

If a,b,c are in G.P where a,b,c are positive numbers and "log"(5c)/(a), "log" (3b)/(5c) and "log" (a)/(3b) are in A.P then the triangle whose sides are a,b, c is