Home
Class 12
MATHS
y=tan^(-1)(sqrt(1+x^(2)-1))/(x)...

y=tan^(-1)(sqrt(1+x^(2)-1))/(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Let y_1=tan^(-1)((sqrt(1+x^2)-1)/x) and y_2=tan^(-1)((2xsqrt(1-x^2))/(1-2x^2)) then (dy_1)/(dy_2)=

If y=tan^(-1)[(x-sqrt(1-x^(2)))/(x+sqrt(1-x^(2)))]," then "(dy)/(dx)=

(iv) If y=tan^(-1)(x/(1+sqrt(1-x^(2))))+sin(2tan^(-1)sqrt((1-x)/(1+x))) , then find (dy)/(dx) for x epsilon(-1,1)

If y=tan ^(-1) (sqrt( 1+x^(2))-x),then ( dy)/(dx)=

y=tan^(-1)(x/(1+sqrt(1-x^2)))

y=tan^(-1)(x/(1+sqrt(1-x^2)))

y=tan^(-1)(x/(1+sqrt(1-x^2)))

y=tan^(-1)(x/(1+sqrt(1-x^2)))