Home
Class 12
MATHS
" (a) "root(4)(417)tan((pi)/(6))[1,omega...

" (a) "root(4)(417)tan((pi)/(6))[1,omega,omega^(2)],[omega,omega^(2),1],[omega^(2),1,omega]|

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is complex cube root of 1 then S.T [(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega)]=0

If omega is a cube root of unity |(1, omega, omega^(2)),(omega, omega^(2), 1),(omega^(2), omega, 1)| =

If omega is a complex cube root of unity, show that ([[1,omega,omega^2],[omega,omega^2, 1],[omega^2, 1,omega]]+[[omega,omega^2, 1],[omega^2 ,1,omega],[omega,omega^2, 1]])[[1,omega,omega^2]]=[[0, 0 ,0]]

If omega = cis (2pi)/(3) , then number of distinct roots of |(z+1,omega,omega^(2)),(omega,z + omega^(2),1),(omega^(2),1,z+omega)| = 0.

(1-omega+omega^(2))^(6)+(1-omega^(2)+omega)^(6)

If omega is a cube root of unity, then for polynomila is |(x + 1,omega,omega^(2)),(omega,x + omega^(2),1),(omega^(2),1,x + omega)|

If omega is a cube root of unity then the value of |(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega)| is -