Home
Class 12
MATHS
" (ii) "sin^(-1)(2x sqrt(1-x^(2)))=2cos^...

" (ii) "sin^(-1)(2x sqrt(1-x^(2)))=2cos^(-1)x,(1)/(sqrt(2))<=x<=1

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that (i) sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,1/(sqrt(2))lexle1

Show that (i) sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,1/(sqrt(2))lexle1

Prove that sin^(-1)(2x.sqrt(1-x^(2)))=2cos^(-1)x,(1)/(sqrt(2))lexlt1

Show that (i) sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x ,-1/(sqrt(2))lt=xlt=1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^2))=2cos^(-1)x ,1/(sqrt(2))lt=xlt=1

Show that(i) sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x ,-1/(sqrt(2))lt=xlt=1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^2))=2cos^(-1)x ,1/(sqrt(2))lt=xlt=1

Prove the following: sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2))

y = sin^(-1)(x/sqrt(1+x^2)) + cos^(-1)(1/sqrt(1+x^2))

Differentiate each of the following functions with respect to x:( i) sin^(-1)(2x sqrt(1-x^(2))),-(1)/(sqrt(2))