Home
Class 12
MATHS
" (10) "y=(x cos^(-1)x)/(sqrt(1-x^(2)))-...

" (10) "y=(x cos^(-1)x)/(sqrt(1-x^(2)))-log sqrt(1-x^(2))" .Thun Rove that "(dy)/(dx)=(cos^(-1)x)/((1-x^(2))^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(x cos^(-1)x)/(sqrt(1-x^(2)))-log sqrt(1-x^(2)), then prove that (dy)/(dx)=(co^(1-x)x)/((1-x^(2))^((3)/(2)))

If y=(x sin^(-1)x)/(sqrt(1-x^(2)))+log sqrt(1-x^(2)), then prove that (dy)/(dx)=(sin^(-1)x)/((1-x^(2))^((3)/(2)))

If y = (x sin^(-1) x)/(sqrt(1 - x^2)) + "log" sqrt(1 - x^2) , prove that (dy)/(dx) = (sin^(-1)x)/((1 - x^2)^(3//2))

If y= sin^(-1)(x/(sqrt(1+x^2))) + cos^(-1)(1/(sqrt(1+x^2))) , prove that (dy)/(dx)=(2x)/(1+x^2) .

If y=sin^(-1)(x/(sqrt(1+x^2)))+cos^(-1)(1/(sqrt(1+x^2))), 0

If y=cos^(-1){x sqrt(1-x)+sqrt(x)sqrt(1-x^(2))} and 0

if y=sqrt((1-cos x )/(2)) , the n prove that (dy)/(dx)=1/2cos" x/2.

If y = cos^(-1) [(x+sqrt(1-x^(2)))/(sqrt(2))] then (dy)/(dx) =