Home
Class 11
PHYSICS
[" The motion of a particle along a stra...

[" The motion of a particle along a straight line is "],[" described by equation "x=8+12t-t^(3)," where "x" is in "],[" metre and "t" in second.The retardation of the particle "],[" when its velocity becomes zero,is: "],[[" (a) "24ms^(-2)," (b) zero "],[" (c) "6ms^(-2)," (d) "12ms^(-2)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

The motion of a particle along a straight line is described by equation : x = 8 + 12 t - t^3 where x is in metre and t in second. The retardation of the particle when its velocity becomes zero is.

The motion of a particle along a straight line is described by equation : x = 8 + 12 t - t^3 where x is in metre and t in second. The retardation of the particle when its velocity becomes zero is.

The motion of a particle along a straight line is described by equation : x = 8 + 12 t - t^3 where x is in metre and t in second. The retardation of the particle when its velocity becomes zero is.

The motion of a particle along a straight line is described by equation : x = 8 + 12 t - t^3 where x is in meter and t in second. The retardation of the particle when its velocity becomes zero is.

The motion of a particle along a straight line is described by the function x = (2t-3)^(2) where x is in metres and t is in seconds . The acceleration of the particle at =2s is

The displacement of a particle moving in a straight line is described by the relation s=6+12t-2t^(2) . Here s is in metre and t in second. The distance covered by the particle in first 5s is

The displacement of a particle moving in a straight line is described by the relation s=6+12t-2t^(2) . Here s is in metre and t in second. The distance covered by the particle in first 5s is

The displacement of a particle moving in a straight line is described by the relation s=6+12t-2t^(2) . Here s is in metre and t in second. The distance covered by the particle in first 5s is

The displacement of a particle moving in a straight line, is given by s = 2t^2 + 2t + 4 where s is in metres and t in seconds. The acceleration of the particle is.