Home
Class 12
MATHS
If | (z - i)/(z + 2i)| = 1, |z| = 5/2 th...

If `| (z - i)/(z + 2i)| = 1, |z| = 5/2` then the value of `|z + 3i|`

A

`7/2`

B

`sqrt10`

C

`sqrt5`

D

sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given conditions: 1. \(|\frac{z - i}{z + 2i}| = 1\) 2. \(|z| = \frac{5}{2}\) We need to find the value of \(|z + 3i|\). ### Step 1: Analyze the first condition From the first condition, we have: \[ |\frac{z - i}{z + 2i}| = 1 \] This implies that: \[ |z - i| = |z + 2i| \] ### Step 2: Express \(z\) in terms of its real and imaginary parts Let \(z = a + bi\), where \(a\) and \(b\) are real numbers. Then we can write: \[ |z - i| = |(a + bi) - i| = |a + (b - 1)i| = \sqrt{a^2 + (b - 1)^2} \] \[ |z + 2i| = |(a + bi) + 2i| = |a + (b + 2)i| = \sqrt{a^2 + (b + 2)^2} \] ### Step 3: Set the magnitudes equal Setting the two magnitudes equal gives us: \[ \sqrt{a^2 + (b - 1)^2} = \sqrt{a^2 + (b + 2)^2} \] ### Step 4: Square both sides Squaring both sides, we get: \[ a^2 + (b - 1)^2 = a^2 + (b + 2)^2 \] This simplifies to: \[ (b - 1)^2 = (b + 2)^2 \] ### Step 5: Expand and simplify Expanding both sides: \[ b^2 - 2b + 1 = b^2 + 4b + 4 \] Subtract \(b^2\) from both sides: \[ -2b + 1 = 4b + 4 \] Rearranging gives: \[ -2b - 4b = 4 - 1 \] \[ -6b = 3 \implies b = -\frac{1}{2} \] ### Step 6: Use the second condition Now we use the second condition \(|z| = \frac{5}{2}\): \[ |z| = \sqrt{a^2 + b^2} = \frac{5}{2} \] Substituting \(b = -\frac{1}{2}\): \[ \sqrt{a^2 + \left(-\frac{1}{2}\right)^2} = \frac{5}{2} \] \[ \sqrt{a^2 + \frac{1}{4}} = \frac{5}{2} \] ### Step 7: Square both sides again Squaring both sides gives: \[ a^2 + \frac{1}{4} = \left(\frac{5}{2}\right)^2 \] \[ a^2 + \frac{1}{4} = \frac{25}{4} \] ### Step 8: Solve for \(a^2\) Subtract \(\frac{1}{4}\) from both sides: \[ a^2 = \frac{25}{4} - \frac{1}{4} = \frac{24}{4} = 6 \] Thus, \(a = \sqrt{6}\) or \(a = -\sqrt{6}\). ### Step 9: Find \(|z + 3i|\) Now we can find \(|z + 3i|\): \[ z + 3i = a + \left(-\frac{1}{2} + 3\right)i = a + \frac{5}{2}i \] Calculating the modulus: \[ |z + 3i| = \sqrt{a^2 + \left(\frac{5}{2}\right)^2} \] \[ = \sqrt{6 + \frac{25}{4}} = \sqrt{\frac{24}{4} + \frac{25}{4}} = \sqrt{\frac{49}{4}} = \frac{7}{2} \] ### Final Answer Thus, the value of \(|z + 3i|\) is: \[ \frac{7}{2} \]

To solve the problem, we start with the given conditions: 1. \(|\frac{z - i}{z + 2i}| = 1\) 2. \(|z| = \frac{5}{2}\) We need to find the value of \(|z + 3i|\). ### Step 1: Analyze the first condition ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If |z+2+3i|=5 then the locus of z is

If |z +1| = z + 2(1 - i) , then the value of z

If |z - 1| = |z + 1| = |z - 2i|, then value of |z| is

If |z+i|^2−|z−i|^2 =3 then the locus of z is

If |z+2i|<=2, then the greatest value of |z-sqrt(3)+i|

If |z+2i|<=2, then the greatest value of |z-sqrt(3)+i|

If (4+i)(z+bar(z))-(3+i)(z-bar(z))+26i = 0 , then the value of |z|^(2) is