Home
Class 12
MATHS
Find the value of int0^(2pi) (xsin^8 x)/...

Find the value of `int_0^(2pi) (xsin^8 x)/(sin^8 x + cos^8 x)dx`

A

`(pi^2)`

B

`2(pi^2)`

C

`3(pi^2)`

D

`4(pi^2)`

Text Solution

Verified by Experts

The correct Answer is:
A

NA
Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^((pi)/(2))(dx)/(1+sin x+cos x)=In2, then the value of int_(0)^((pi)/(2))(sin x)/(1+sin x+cos x)dx is equal to:

The value of int_(0)^(2pi) |cos x -sin x|dx is

Evaluate: int_0^(pi/2) (sin2x)/(sin^4x+cos^4x)dx

The value of int_(0)^(2 pi)|cos x-sin x|dx is

Evaluate: int_0^(pi//2)(xsinx cos\ x)/(sin^4x+cos^4x)dx

Find the value of int_(0)^( pi)(x sin x)/(1+cos^(2)x)backslash dx

The value of int_(0)^(pi//2) (sin 8x log cot x)/(cos 2x)dx , is