Home
Class 12
MATHS
If f'(x) = tan^(-1)(Sec x + tan x), x in...

If `f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2)` and `f(0) = 0` then the value of `f(1)` is

A

`(pi + 1)/4`

B

`(pi - 1)/4`

C

`(pi + 1)/2`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given derivative of the function \( f'(x) = \tan^{-1}(\sec x + \tan x) \) and the initial condition \( f(0) = 0 \). We want to find the value of \( f(1) \). ### Step 1: Simplifying \( f'(x) \) We know that: \[ f'(x) = \tan^{-1}(\sec x + \tan x) \] Using the identity \( \sec x + \tan x = \frac{1 + \sin x}{\cos x} \), we can rewrite: \[ f'(x) = \tan^{-1}\left(\frac{1 + \sin x}{\cos x}\right) \] ### Step 2: Recognizing the derivative form We can also express \( \sec x + \tan x \) in terms of a tangent function: \[ \sec x + \tan x = \frac{1 + \sin x}{\cos x} = \tan\left(\frac{\pi}{4} + \frac{x}{2}\right) \] Thus, we have: \[ f'(x) = \tan^{-1}\left(\tan\left(\frac{\pi}{4} + \frac{x}{2}\right)\right) = \frac{\pi}{4} + \frac{x}{2} \] ### Step 3: Integrating \( f'(x) \) Now we integrate \( f'(x) \): \[ f(x) = \int \left(\frac{\pi}{4} + \frac{x}{2}\right) dx = \frac{\pi}{4}x + \frac{x^2}{4} + C \] ### Step 4: Using the initial condition We apply the initial condition \( f(0) = 0 \): \[ f(0) = \frac{\pi}{4}(0) + \frac{(0)^2}{4} + C = 0 \implies C = 0 \] Thus, the function simplifies to: \[ f(x) = \frac{\pi}{4}x + \frac{x^2}{4} \] ### Step 5: Finding \( f(1) \) Now we calculate \( f(1) \): \[ f(1) = \frac{\pi}{4}(1) + \frac{(1)^2}{4} = \frac{\pi}{4} + \frac{1}{4} \] Combining these gives: \[ f(1) = \frac{\pi + 1}{4} \] ### Final Answer Thus, the value of \( f(1) \) is: \[ \frac{\pi + 1}{4} \] ---

To solve the problem, we start with the given derivative of the function \( f'(x) = \tan^{-1}(\sec x + \tan x) \) and the initial condition \( f(0) = 0 \). We want to find the value of \( f(1) \). ### Step 1: Simplifying \( f'(x) \) We know that: \[ f'(x) = \tan^{-1}(\sec x + \tan x) \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If f'(x)=3x^(2)sin x-x cos x x!=0 f(0)=0 then the value of f((1)/(pi)) is

If f'(x)=3x^(2)sin x-x cos x ,x!=0 f(0)=0 then the value of f((1)/(pi)) is

If f(x)=tan^(2)((pi x)/6) ,then f'(2)

A function y=f(x) satisfies f''(x)=-(1)/(x^(2))-pi^(2)sin(pi x)f'(2)=pi+(1)/(2) and f(1)=0 then value of f((1)/(2)) is

Let f : R to [0, pi/2) be defined by f ( x) = tan^(-1) ( 3x^(2) + 6x + a)". If " f(x) is an onto function . then the value of a si

If f(x)=(x)/(1+x tan x):x in(0,(pi)/(2)), then

f(x)=tan x,x in(-(pi)/(2),(pi)/(2)) and g(x)=sqrt(1-x^(2)) then g(f(x)) is

f(x)=[Tan( pi/4)+Tan x]*[Tan (pi/4)+Tan(pi/4-x)]" and "g(x)=x(x+1)" .Then the value of "g[f(x)]" is equal to "

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is